## PRELIMINARY INFORMATION

ON THE

CONTENT OF REGISTERS OF THE

1103A FLOATING POINT INSTRUCTIONS

15 October 1956 Date:

Prepared by: P. Warburton

Issued by:

Systems Analysis Dept. Systems Group of Univac Scientific Applications

The layout of the "Floating Point Content of Registers" is not the same as that of the fixed point instructions. There are more conditions affecting the final content of A. First, has the NEFF been set or cleared by instruction 05? Second, what is the relative size of (u) and (v)? For these reasons, only the Pack and Unpack commands are in the usual format. Since the arithmetic Floating Point commands do not change (u) and (v), (u), and (v), are not included in the Contents of Registers of operations 64, 65, 66, 67, 01, and 02.

The binary point of floating point numbers is usually between the twenty-eighth and the twenty-seventh place. After the arithmetic pseudo-normalizing process, the mantissa is in  $A_{L}$ , and the binary point is between  $A_{63}$  and  $A_{62}$ . It may or may not be normalized. The position of the most significant bit (MSB) indicates what has occurred. If normalized, the MSB will be in  $A_{62}$ .

The value of the significant bits depends upon whether rounding has occurred. Rounding in effect adds an extra bit to the value of (a) at  $A_{35}$  (unless the addition of the rounding bit carries into  $A_{62}$ , in which case the final left shift is omitted and the rounding bit remains added to the value of  $A_{34}$ .

The value of (Q) will be either (1) the normalized rounded, and packed result (NRP), or (2) the pseudo-normalized result (PN).

NOTE: If A or Q is the v-address of any floating point command other than the pack or unpack command (A) or (Q) will be destroyed by the Unpack (u) sequence before the unpack (v) sequence is reached.

Instruction: Floating Add (FAuv)

Operation:

64

Function: Form in Q the normalized rounded and packed floating point sum of (u) and (v).

|    | T                    |                                                                                                                                            | 1                                  |                                                                                                                                                                                                   |          | ·        |                        |  |
|----|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------------------|--|
| NE | Arithmetic           | 1.                                                                                                                                         |                                    | (A) <sub>f</sub>                                                                                                                                                                                  |          |          | (Q) <sub>f</sub>       |  |
| FF | Conditions           |                                                                                                                                            | MSB                                | Value of significant bits                                                                                                                                                                         | Round    | Norm     | Value .                |  |
| 0  | (u)≥ (v)<br>(u)< (v) |                                                                                                                                            | <sup>A</sup> 62<br><sup>A</sup> 62 | $(u_m)_{*2}^{(u_c)} - (v_c)_{+(v_m)}^{(v_c)}$ $(v_m)_{*2}^{(v_c)} - (u_c)_{+(u_m)}^{(v_c)}$                                                                                                       |          | NRP      | (u) + (v) (u) + (v)    |  |
|    |                      |                                                                                                                                            |                                    |                                                                                                                                                                                                   |          |          |                        |  |
| .1 |                      | $(u_c) - (v_c) \ge 2$ $(u_c) - (v_c) < 2$                                                                                                  |                                    | $(u_{\underline{m}}) \cdot 2^{(u_{\underline{c}})} - (v_{\underline{c}})_{+}(v_{\underline{m}})$ $(u_{\underline{m}}) \cdot 2^{(u_{\underline{c}})} - (v_{\underline{c}})_{+}(v_{\underline{m}})$ | no<br>no | PN<br>PN | (u) + (v)<br>(u) + (v) |  |
|    | (u) ∠ (v) (          | $\langle \mathbf{v_c} \rangle - \langle \mathbf{u_c} \rangle \ge 2$<br>$\langle \mathbf{v_c} \rangle - \langle \mathbf{u_c} \rangle \le 2$ | <sup>A</sup> 61<br>•61 – A33       | $(v_{m})_{*2}(v_{c}) - (u_{c})_{+}(u_{m})$ $(v_{m})_{*2}(v_{c}) - (u_{c})_{+}(u_{m})$                                                                                                             | no<br>no | PN<br>PN | (u) + (v)<br>(u) + (v) |  |

Instruction: Floating Subtract (FSuv)

Operation:

65

Function: Form in Q the normalized, rounded and packed floating point difference of (u) and (v).

| NE | Arithmetic          | 3                                                                              | , <del>4</del> ,                                    | (A)                                                                                                                                                                                                                                               | (Q) <sub>f</sub> |          |                        |
|----|---------------------|--------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|------------------------|
| FF | Conditions          | 3                                                                              | MSB                                                 | Value of significant bits                                                                                                                                                                                                                         | Round            | Norm     | Value                  |
| .0 | (u) <u>&gt;</u> (v) |                                                                                | A <sub>62</sub>                                     | $(\mathbf{u_m}) \cdot 2^{(\mathbf{u_c})} - (\mathbf{v_c})_{-(\mathbf{v_m})}$                                                                                                                                                                      | ł                | NRP      | (u) - (v)              |
|    | (u)∠ (v)            |                                                                                | <sup>A</sup> 62                                     | $(v_{m}).2^{(v_{c})} - (u_{c})_{-(u_{m})}$                                                                                                                                                                                                        | yes              | NRP      | (u) - (v)              |
| 1  | (u)≥ (v)            | $(u_c) - (v_c) \ge 2$<br>$(u_c) - (v_c) \le 2$                                 | <sup>A</sup> 61<br><sup>A</sup> 61 <sup>-A</sup> 33 | $(\mathbf{u}_{\mathbf{m}}) \cdot 2^{(\mathbf{u}_{\mathbf{c}})} - (\mathbf{v}_{\mathbf{c}})_{-(\mathbf{v}_{\mathbf{m}})}$ $(\mathbf{u}_{\mathbf{m}}) \cdot 2^{(\mathbf{u}_{\mathbf{c}})} - (\mathbf{v}_{\mathbf{c}})_{-(\mathbf{v}_{\mathbf{m}})}$ | no<br>no         | PN<br>PN | (u) - (v)<br>(u) - (v) |
|    | (u) ∠ (v)           | (v <sub>c</sub> )-(u <sub>c</sub> )≥2<br>(v <sub>c</sub> )-(u <sub>c</sub> )∠2 | <sup>A</sup> 61<br><sup>A</sup> 61 <sup>-A</sup> 33 | $(v_{m}) \cdot 2^{(v_{c})} - (u_{c})_{-(u_{m})}$<br>$(v_{m}) \cdot 2^{(v_{c})} - (u_{c})_{-(u_{m})}$                                                                                                                                              | no<br>no         | PN<br>PN | (u) - (v)<br>(u) - (v) |

Instruction: Floating Point Multiply (MPuv)

Operation:

66

Function: Form in Q the normalized rounded and packed floating point product of (u) and (v).

| ,  |                                                                                                                       |                                    |                                                                         |                  |          |                    |
|----|-----------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|------------------|----------|--------------------|
| ne | Arithmetic                                                                                                            |                                    | (A) <sub>f</sub>                                                        | (Q) <sub>f</sub> |          |                    |
| FF | Condition                                                                                                             | MSB                                | MSB Value of significant bits                                           |                  | Norm     | Value              |
| 0  |                                                                                                                       | A62                                | (u <sub>m</sub> ) • (v <sub>m</sub> )                                   | yes              | NRP      | (u)•(v)            |
| 1  | $(\mathbf{u_{m}}) \cdot (\mathbf{v_{m}}) \geq \frac{1}{2}$ $(\mathbf{u_{m}}) \cdot (\mathbf{v_{m}}) \leq \frac{1}{2}$ | <sup>A</sup> 61<br><sup>A</sup> 60 | (u <sub>m</sub> ).(v <sub>m</sub> ) (u <sub>m</sub> ).(v <sub>m</sub> ) | no<br>no         | PN<br>PN | (u).(v)<br>(u).(v) |

Instruction: Floating Point Divide (FDuv) Operation: 67

Function: Form in Q the normalized, rounded and packed floating point quotient of (u) - (v)

| NE | Arithmetic                                                                                                                                                                            | (A) <sub>f</sub>                   |                                                                                                                       |          |          | (Q) <sub>f</sub>                             |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------|----------|----------------------------------------------|--|
| FF | Condition                                                                                                                                                                             | MSB                                | Value of significant bits                                                                                             | Round    | Norm     | Value                                        |  |
| 0  |                                                                                                                                                                                       | <sup>A</sup> 62                    | (u <sub>m</sub> ) ÷ (v <sub>m</sub> )                                                                                 | yes      | NRP      | (u) ÷ (v)                                    |  |
| 1  | $(\mathbf{u}_{\mathbf{m}}) \stackrel{\cdot}{\rightarrow} (\mathbf{v}_{\mathbf{m}}) \geq 1$ $(\mathbf{u}_{\mathbf{m}}) \stackrel{\cdot}{\rightarrow} (\mathbf{v}_{\mathbf{m}}) \leq 1$ | <sup>A</sup> 61<br><sup>A</sup> 60 | $(\mathbf{u}_{\mathbf{m}}) \div (\mathbf{v}_{\mathbf{m}})$ $(\mathbf{u}_{\mathbf{m}}) \div (\mathbf{v}_{\mathbf{m}})$ | no<br>no | PN<br>PN | (u) <del>;</del> (v)<br>(u) <del>;</del> (v) |  |

Instruction: Floating Point Polynomial Multiply (FPuv) Operation: 01

Function: Form in Q the sum of (v) and the product of  $(Q)_{i} \cdot (u)$ 

(NE FF should be cleared for the execution of this instruction. If it is not the product mantissa will be rounded <u>not</u> with one, but with  $(A_L)$ .)

| NE<br>FF | Arithmetic Condition         | MSB          | (A) <sub>f</sub> Value of mantissa                                                                        | (Q) <sub>f</sub> |     |                          |
|----------|------------------------------|--------------|-----------------------------------------------------------------------------------------------------------|------------------|-----|--------------------------|
| 0        | (Q) (u)≥ (v)<br>(Q) (u)∠ (v) | A 62<br>A 62 | $(Qu)_{m} \cdot 2^{(Qu)_{C} - (v_{C})_{+}(v_{m})_{c}}$ $(v_{m}) \cdot 2^{(v_{C}) - (Qu)_{C}_{+}(Qu)_{m}}$ | 3 (              | NRP | (Q) <sub>1</sub> (u)+(v) |

Instruction: Floating Point Inner Product (FIuv) Operation: 02

Function: Form in Q the normalized, rounded and packed sum of  $(Q_1)$  and the product of (u) and (v).

(NE FF should be cleared for the execution of this instruction; if it is not, the product mantissa will be rounded, not with one, but with  $(A_L)$ .)

| ne | Arithmetic                                  |            | (A) <sub>f</sub>                                                                                  |      | (Q) <sub>f</sub>                                  |
|----|---------------------------------------------|------------|---------------------------------------------------------------------------------------------------|------|---------------------------------------------------|
| FF | Condition                                   | MSB        | Value of significant Round bits                                                                   | Norm | Value                                             |
| 0  | (Q) <sub>1</sub> ≥ (u) (v)<br>(Q) < (u) (v) | A62<br>A62 | $(Q_m)_{i-2}^{(Q_c)_{i-(uv)_{c+(uv)_{m}}}}$ yes $(uv_m)_{i-2}^{(uv)_{c-(Q_c)_{i+(Q_m)_{i}}}}$ yes |      | (Q) <sub>1</sub> +(u)(v) (Q) <sub>1</sub> +(u)(v) |

Operation: 03

Instruction: Floating Point Unpack

(UPuv)

Function: Unpack (u) replacing (u) with  $(u_m)$  and replacing  $(v_c)$  with  $(u_c)$  or its complement if (u) is negative. The characteristic portion of  $(u)_f$  contains sign bits. The sign and mantissa bits of  $(v)_f$  are cleared to zero.

| Storage Contents of Register & Storage Position After Operation |                    |                                                       |                   |                 |                                                          |       |                                                                                              |  |
|-----------------------------------------------------------------|--------------------|-------------------------------------------------------|-------------------|-----------------|----------------------------------------------------------|-------|----------------------------------------------------------------------------------------------|--|
| Cle                                                             | 186                | (MC)f or                                              | (MD)              |                 | (A) <sub>f</sub>                                         |       | (Q) <sub>f</sub>                                                                             |  |
| u                                                               | ¥                  | u                                                     | ٧                 | MSB             | Value of bits                                            | Round | · · · · · · · · · · · · · · · · · · ·                                                        |  |
| MC<br>or<br>MD                                                  | MD or MC<br>A      | (u <sub>m</sub> ) (u <sub>m</sub> ) (u <sub>m</sub> ) | (u <sub>c</sub> ) | A34             | No change<br>(u <sub>c</sub> )<br>No change              | no    | No change<br>No change<br>(u <sub>c</sub> )                                                  |  |
| <b>A</b>                                                        | MD or MC           |                                                       | (u <sub>c</sub> ) | A <sub>26</sub> | $(A_m)_i$                                                | no    | No change                                                                                    |  |
|                                                                 |                    |                                                       |                   | A <sub>26</sub> | (A <sub>m</sub> ) <sub>i</sub>                           | no    | (A <sub>c</sub> ) <sub>1</sub>                                                               |  |
| Q                                                               | MD or MC<br>A<br>Q | do-mando                                              | (u <sub>c</sub> ) | A <sub>34</sub> | No change<br>(Q <sub>c</sub> ) <sub>1</sub><br>No change | no    | (Q <sub>m</sub> ) <sub>i</sub> (Q <sub>m</sub> ) <sub>i</sub> (Q <sub>c</sub> ) <sub>i</sub> |  |

Instruction: Normalize, Round, & Pack (NPuv)

Operation:

Function: Replace (u) with the normalized rounded packed floating point number obtained from the possibly unnormalized mantissa in (u)<sub>i</sub> and the biased characteristic in (v)<sub>c</sub>.

It is assumed that  $(u)_1$  has the binary point between  $u_{27}$  and  $u_{26}$   $((u)_1$  is scaled 2-27).

| Storage Contents of Registers & Storage Position After Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                          |                  |                 |                                                                            |       |                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|------------------|-----------------|----------------------------------------------------------------------------|-------|------------------------------------------------------|
| Cla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | (MC) <sub>c</sub> or     |                  |                 | (A) <sub>f</sub>                                                           |       | (Q) <sub>f</sub>                                     |
| u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٧        | u                        | ٧                | MSB             | Value of bits                                                              | Round |                                                      |
| MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MD or MC | MRP(u)+(v <sub>c</sub> ) | No change        | A62             | (u <sub>m</sub> ) <sub>f</sub>                                             | yes   | No change                                            |
| or<br>MD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>A</b> | NRP(u)+(v <sub>c</sub> ) |                  | A <sub>62</sub> | (u <sub>m</sub> ) <sub>f</sub>                                             | yes   | No change                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q        | NRP(u)+(v <sub>c</sub> ) | <del></del>      | A <sub>62</sub> | (um)f                                                                      | yes   | No change                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MC       |                          |                  | ·               |                                                                            |       |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MC       |                          | No change        | A <sub>34</sub> | $\mathtt{MRP}(\mathtt{A_R})_{\mathbf{i}} + (\mathtt{v_c})$                 | yes   | No change                                            |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A        |                          | allo dillo di la | A <sub>34</sub> | $\mathtt{MRP}(\mathtt{A_R})_{\mathbf{i}} + (\mathtt{A_{Rc}})_{\mathbf{i}}$ | yes   | No change                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q        |                          |                  | A <sub>34</sub> | $\mathbf{MRP}(\mathbf{A_R})_{1} + (\mathbf{Q_c})$                          | yes   | No change                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MD or MC |                          | No change        | A <sub>62</sub> | (u <sub>m</sub> )                                                          | уев   | MRP(Q) <sub>i</sub> +(v <sub>c</sub> )               |
| Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A        |                          | -                | A <sub>62</sub> | (um)f                                                                      | yes   | NRP(Q) <sub>i</sub> +(A <sub>Rc</sub> ) <sub>i</sub> |
| an care of the car | Q        |                          |                  | A <sub>62</sub> | (u <sub>m</sub> ) <sub>f</sub>                                             | yes   | $NRP(Q)_{i}+(Q_{c})_{i}$                             |

Instruction: Floating Point Normalize Exit (NEj) Operation: 05

Function: If J=O clear the normalize exit flip-flop (designated NFF); if j-1

set NFF to 1

(a) The results of setting NFF to 1 is set forth in the "Contents of Registers"

(b) When NFF is set to 7, it will remain set until cleared by another NEj - instruction

(c) NFF must be cleared for FP, FI, and NF instructions